12 research outputs found

    Reduced Power in Fronto-Parietal Theta EEG Linked to Impaired Attention-Sampling in Adult ADHD

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) in adults is understudied, especially regarding neural mechanisms such as oscillatory control of attention sampling. We report an electroencephalography (EEG) study of such cortical mechanisms, in ADHD-diagnosed adults during administration of Test of Variables of Attention (TOVA), a gold-standard continuous performance test for ADHD that measures the ability to sustain attention and inhibit impulsivity. We recorded 53 adults (28 female, 25 male, aged 18-60), and 18 matched healthy controls, using 128-channel EEG. We analyzed sensor-space features established as neural correlates of attention: timing-sensitivity and phase-synchrony of response activations, and event-related (de)synchronization (ERS/D) of alpha and theta frequency band activity; in frontal and parietal scalp regions. TOVA test performance significantly distinguished ADHD adults from neurotypical controls, in commission errors, response time variability (RTV) and d' (response sensitivity). The ADHD group showed significantly weaker target-locked and responselocked amplitudes, that were strongly right-lateralized at the N2 wave, and weaker phase synchrony (longer reset poststimulus). They also manifested significantly less parietal prestimulus 8-Hz theta ERS, less frontal and parietal poststimulus 4-Hz theta ERS, and more frontal and parietal prestimulus alpha ERS during correct trials. These differences may reflect excessive modulation of endogenous activity by strong entrainment to stimulus (alpha), combined with deficient modulation by neural entrainment to task (theta), which in TOVA involves monitoring stimulus spatial location (not predicted occurrence onset which is regular and task-irrelevant). Building on the hypotheses of theta coding for relational structure and rhythmic attention sampling, our results suggest that ADHD adults have impaired attention sampling in relational categorization tasks.Peer reviewe

    Flow Experiences During Visuomotor Skill Acquisition Reflect Deviation From a Power-Law Learning Curve, but Not Overall Level of Skill

    Get PDF
    Flow is a state of "optimal experience" that arises when skill and task demands match. Flow has been well studied in psychology using a range of self-report and experimental methods; with most research typically focusing on how Flow is elicited by a particular task. Here, we focus on how the experience of Flow changes during task skill development. We present a longitudinal experimental study of learning, wherein participants (N = 9) play a novel steering-game task designed to elicit Flow by matching skill and demand, and providing clear goals and feedback. Experimental design involves extensive in-depth measurement of behavior, physiology, and Flow self-reports over 2 weeks of 40 game trials in eight sessions. Here we report behavioral results, which are both strikingly similar and strong within each participant. We find that the game induces a near-constant state of elevated Flow. We further find that the variation in Flow across all trials is less affected by overall performance improvement than by deviation of performance from the expected value predicted by a power law model of learning.Peer reviewe

    A Sensor Interface for Neurochemical Signal Acquisition

    No full text
    This paper describes the design of an integrated sensor interface for neurochemical signal acquisition. Neurochemicals undergo oxidation and reduction reactions in the presence of an action potential. Thus, knowledge of the oxidation and reduction potentials of neurochemicals is important in the neurostimulation treatment of neurological and neurodegenerative diseases. The sensor interface circuit utilizes a mixed-signal design to detect the induced current from the neurochemical, in response to an applied voltage. The circuit is fabricated in 65nm CMOS technology and supports a wide input current range of ±1.2μA with a current resolution of 85.4pA, enabling detection of neurochemicals within the supported current range. Measured results with dopamine concentration of 500nMol demonstrate the ability of the sensor interface circuit to detect oxidation and reduction current peaks, indicating the release times and the required oxidation and reduction potentials for neurostimulation of the neurochemical.Peer reviewe

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    No full text
    Abstract Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD
    corecore